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Fig. 1 Tip vortex trajectory

If the wake is assumed to be undistorted 
in the tip path plane and no wake contraction 
occurs in the radial direction (fig. 1), then the 
tip vortex trajectories are described by the 
equations
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1. INTRODUCTION

The aerodynamic behavior of airfoils in the 
high AoA regime is important for predicting 
the adverse effects produced in the reverse flow 
regime on the rotor. In the reverse flow region, 
the direction of the relative flow vector changes 
from the trailing edge toward the leading edge 
of the airfoil. While the fundamental process 
of the blade wake and tip vortex formation is 
similar to that found with a fixed wing, one 
difference with helicopter tip vortices is that 
they are curved and so they experience a self-
induced effect. Another complication with 
helicopter rotors is that the wakes and tip 
vortices from other blades can lie close to each 
other and to the plane of blade rotation and so 
they have large induced effects on the blade lift 
distribution. Some authors have examined the 
higher harmonics of the rotor loading in forward 
flight and have concluded that the effects of the 
tip vortices are generally more important than 
the shed wake. 
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Fig. 3 Helicopter rotor in forward flight

The region of the rotor disk affected by 
compressibility effects is shown in fig. 3 and is 
defined on the surface where the incident Mach 
number of the flow that is normal to the leading 
edge of the blade exceeds the drag divergence 

Mach number, ddM . If RMΩ  is the hover 
tip Mach number, than the region of the disk 
affected by compressibility effects is defined by

( ) ddRr MrMM ≥+= Ω ψµψ sin,  	             (2)
The azimuth angle for the onset drag 

divergence, 1ψ , can be obtained by setting 
1=r , so that
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and 12 180 ψ−=ψ .
The increment in the profile power PC∆  
associated with this region on the disk is
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where dC∆  is the extra drag on the blade 
section when it exceeds the drag divergence 

Mach number, ddM  and σ  is rotor solidity 
coefficient which represents the ratio of the 
blades area to the rotor disk area. For the NACA 
0012 airfoil, Prouty (1986) suggests that this 
can be approximated by

where bψ is the position of the blade when the 

vortex was formed and wψ is the position of the 
vortex element relative to the blade.

Fig. 2 Helicopter rotor blade

The angular or rotational speed of the rotor 
is denoted by Ω , the rotor radius by R, the 
advanced ratio RV Ωα=µ ∞ /cos  and Ryr /=  
where y is the axis along the rotor blade and 
α  is the angle between the helicopter forward 
velocity ∞V  and the plane of the rotor. The 
subscript symbols T and R denote the tangential 
and radial velocity (fig. 2).

These interactions of blades and tip vortices 
(called blade-vortex-interactions, BVIs) can 
occur at many different locations over the rotor 
disk and also with different orientations.

The most important component of the 
helicopter is the main rotor for which there is 
a great deal of activity in developing new and 
improved mathematical models that predict 
the flow physics. A high tip speed gives the 
rotor a high level of stored rotational kinetic 
energy and reduces the rotor torque required 
for a given power, but there are two important 
factors that work against the use of a high tip 
speed: compressibility effects and noise.

The additional effects of compressibility on 
the overall rotor profile power requirements, 
when the tip of the advancing blade approaches 
and exceeds the drag divergence Mach number 
were estimated using the blade element theory 
combined with the airfoil section characteristics. 
A more detailed analysis of compressibility 
effects on the rotor must represent the actual 
nonlinear airfoil characteristics as functions 
of Mach number through stall at each blade 
element followed by numerical integration. 
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Fig. 4 Solid-fluid surface

If the surface is represented by a scalar 
function of position and time, ( ) 0, =trF  , then 
the total time rate of change is zero,
( ) ( ) ( ) 0=⋅+

∂
∂

= FgradV
t
F

tD
FD 

  (5)
on ( ) 0, =trF  . 

The fluid force acting on a rigid body of 

arbitrary shape translating with a velocity ( )tU


is given by

∫∫−=
S

SdnpF 

  	           (6)
where S denotes the surface of the body and 
p is the pressure on the surface of the body. In 
general, the body may be translating, rotating 
and deforming; consequently, the velocity U is 
a function of position on the surface and time. 
If the body is rigid and is in translation motion, 
then U is a function of time, but uniform over 
the surface of the body. The mathematical 

problem is to determine the externally force eF


 
applied to the body to translate it through the 
fluid.

According to Newton’s second law, we have
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where m is the mass of the body. The above 

equation may be rewritten as

( ) FUm
td

dFe


−=

 		    	           (8)
or

( )IUm
td

dFe


+=

 		    	           (9)
where I


 is the impulse applied 

on the fluid and tdIdF /


−= .
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The rotor limits may be determined by two 
conditions, one condition given by advancing 
blade compressibility effects and the other 
one condition given by retreating blade stall. 
In either case the advancing blade operates at 
low angle of attack (AoA) but at high subsonic 
or transonic conditions, whereas the retreating 
blade operates at low Mach numbers and high 
lift coefficients. 

The helicopter rotor airfoil must assure 
a high maximum lift coefficient, a high drag 
divergence Mach number, a good lift-to-drag 
ratio over a wide range of Mach number and 
a low pitching moment. At higher angles of 
attack the advert pressure gradients produced 
on the upper surface of the airfoil result in a 
progressive increase in the thickness of the 
boundary layer and cause some deviation from 
the linear behavior of lift versus angle of attack.  
On many airfoils, the onset of flow separation 
and stall occur gradually with increasing angle 
of attack, but on some airfoils (those with sharp 
leading edges) the flow separation may occur 
suddenly.

2. THE APPARENT MASS TENSOR

The rate of change of the impulse vector, 
in general, is not in the direction of the 
acceleration of the body. The external force 

eF  applied to the body to translate it through 
the fluid has to be applied in a direction 
different from that of the acceleration of the 
body through the fluid. Physical conditions 
that should be satisfied on given boundaries of 
the fluid (boundary conditions) depend on the 
assumptions made with regard to the nature 
of the fluid, more specifically on the nature 
of the differential equations that are assumed 
to govern the motion of the fluid. For a solid-
fluid boundary, at each point of the solid-fluid 
surface, at every instant, the component normal 
to the surface of the relative velocity between 
the fluid and the solid must be vanish, 0=⋅nV 

, where V


 represents the relative velocity 
and n  the normal to the surface (fig. 4).
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Here h is the distance measured along the 
fixed direction e  and
( ) ∫ ⋅=Γ

C
e xdqh 

			          (15)
is the circulation around the curve of intersection 
between the body surface and the cutting plane. 
The limits 1h and 2h denote the extremities of 
the body measured along the direction e . It 
follows that for motions without circulation the 
force on the body is given by
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where the velocity potential φ is the solution of 
the system
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Since the equation and boundary condition 

for φ are linear, the solution could have the form

321 φ+φ+φ=φ  			           (18)

where each of the function 1φ , 2φ  and 3φ  is a 
solution of the equations
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i=1, 2 or 3.

In the Cartesian coordinate system the 
vectors U


and n  have the expressions
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Because time enters through iu , it is 

convenient to set iii u ϕ=φ , so the system (19) 
takes the form
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With these considerations the impulse I


 

becomes

The fluid force acting on the body is

( )∫∫∫∫ ××−
∂
∂

=
SS

SdgradnUSdn
t

F φρφρ 

   
(10)

The integral ( )∫∫ ×=
S

C SdgradnI φ
 is 

related to the circulation C around the body 
(fig. 5) and φ is the potential of velocity.

Fig. 5 Rotor blade element

The unit vector e is normal to the cutting 
planes, the unit vector 1e

  is tangent to the curve 
of intersection between the blade element 
surface and the cutting plane and the unit vector 

2e  is tangent to the blade element surface.

The component of the vector CI


in the 
direction e  is

∫∫ ×⋅=⋅
S

C SdqneIe 

		         (11)
and the vector Sdn  corresponding to the 
surface element ydxdSd ⋅=  may be written 

ydxdSdn ×=
 , where 1exdxd 

= ,  and 
( )φ= gradq .

On the other hand,

( ) ( ) ( ) xdydqydxdqqydxdqSdn ⋅−⋅=××=×


and
( ) ( ) xdydqeydxdqeSdqne ⋅−⋅=×⋅

      (12)
Since the unit vectors e and 1e

 are normal it 
follows that 0=⋅ xde  and

( ) ( )( )ydexdqSdqne ⋅⋅=×⋅
           (13)

The scalar product yde ⋅  is the normal 
distance between the cutting planes of the solid 
body (fig. 5). If we denote ydehd ⋅=

  it follows  
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The coefficients kim  form a set of nine 
numbers which may be displayed as an array
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which may be referred to as a virtual mass 
tensor or virtual masses that need to be added 
to the mass of the body in order to find the force 
that must be applied to translate it through the 

fluid. Introducing the symbol kiδ  defined by 

0=kiδ  if ki ≠  and 1=kiδ  for ki = , equation 
(28) may be rewritten

( ) ( )∑
=

+=
3

1k

k
kikiie td

udmmF δ
 	         (30)

For any body there are three perpendicular 

directions such that 0=kim  for ki ≠ , so with 
respect to such axes, the equation (30) becomes

( ) ( )
td
udmmF i

iiie += , i=1, 2, 3. 	         (31)

The sum ( )iimm +  represents the apparent 
mass for translation in the i-direction and the 

corresponding iim  is the additional apparent 
mass.

3. RESULTS

The oscillatory motion of the airfoil can 
be decomposed into contributions associated 
with angle of attack which is equivalent to a 
pure plunging motion (fig. 6) and contributions 
associated with pitching (fig. 7). 

A plunge velocity h  produces a uniform 
velocity perturbation w, that is normal to the 
chord, ( ) hxw −=  and the pitch-rate term produces 
a linear variation in normal perturbation 
velocity.  
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The components of the impulse
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The surface integral in the above equations 

may be written as follows
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i
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According to Green’s theorem, if 1ψ and 

2ψ  are two harmonic functions, then
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Introducing the symbol ikm ,
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∂
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n
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with kiik mm = , the components of the impulse 
I


are therefore given by

∑
=

=
3
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, i=1, 2, 3 		          (27)
and the force applied externally to the body is   
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or
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According to the Theodorsen’s theory, 

the solution for the loading bγ  on the airfoil 
surface under harmonic forcing conditions is 
obtained from integral equation

( ) ( ) ( )
∫∫
∞

−
+

−
=

c

w
c

b xd
xx

txxd
xx
txtxw

00 0

,
2
1,

2
1, γ

π
γ

π
(32)

where w is the downwash on the airfoil surface. 

At the trailing edge, ( ) 0, =γ tcb , and the 

airfoil circulation ( )tΓ  is given by

( ) ( )∫=Γ
c

b xdtxt
0

,γ
 			           (33)      

So long as the circulation about the airfoil 
is changing with respect to time, the circulation 
is continuously shed into the wake and will 
continuously affect the aerodynamic loads 
on the airfoil. For a general motion, where 
an airfoil of chord bc 2=  is undergoing a 
combination of pitching ( )αα ,  and plunging 
( )h  motion in a flow of steady velocity V, 
Theodorsen’s solutions for the lift coefficient 
and pitching moment coefficient corresponding 
to mid-chord, 2/1M are
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where a is the pitch axis location relative 
to the mid-chord of the airfoil, measured in 

terms of semi-chord and ( ) ( ) ( )kiGkFkC +=  
is the complex transfer function. It could 

be appreciated that ( )kC  function serves to 
introduce an amplitude reduction and phase lag 
effect on the circulatory part of the lift response 
compared to the result obtained under quasi-
steady conditions [3]. 

Fig. 6 Plunge velocity

For a pitch rate imposed about an axis at 
“a” semi-chords from the mid-chord, then 
( ) ( )axxw −α−=  so that the induced chamber is 

a parabolic arc. 
The problem of finding the air loads on an 

oscillating airfoil was solved by Theodorsen, 
who gave a solution to the unsteady air loads on 
a 2-D harmonically oscillated airfoil in inviscid, 
incompressible flow, with the assumption of 
small disturbances. Both the airfoil and its shed 
wake were represented by a vortex sheet with 
the shed wake extending as a planar surface 
from the trailing edge downstream to infinity. 
The assumption of planar wake is justified if the 
angle of attack disturbances remain relatively 
small. As with the standard quasi-steady thin 

airfoil theory, the bound vorticity, bγ , can 
sustain a pressure difference and, therefore, a 
lift force.

Fig. 7. Pitch rate

The wake vorticity, wγ , must be force free 
with zero net pressure jump over the sheet. 

 h
 V

 

( ) hxw −=
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x
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( ) ( )axxw −α−=   

y  

x  
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Fig. 9 Phase angle

At lower values of reduced frequency, 
the circulatory terms dominate the solution. 
At higher values of reduced frequency, the 
apparent mass forces dominate.

For harmonic pitch oscillations, additional 
terms involving pitch rate α  appear in the 
equations for the aerodynamic response. The 

forcing is given by tie ωαα =  and the pitch rate 
by tiei ωαωα = . In this case, the lift coefficient 
is

( ) ( )[ ]
ti

ti
l

ekik

ekiGikFc

ω

ω

απ

απ







 −+

−++=

2

12

	         (35)
The lift amplitude initially decreases with 

increasing k because of the effects of the shed 
wake and then, for 5.0k >  begins to increase, 
as the apparent mass forces begin to dominate 
the air loads.

4. CONCLUSIONS

The airfoil can generate high lift as a result 
of a vortex that is shed at the leading edge at 
the instant of stall. The vortex travels back 
over the top of the airfoil carrying with it a low 
pressure wave that accounts for the very large 
lift coefficient. 

 This effect can be seen if a pure oscillatory 
variation in angle of attack is considered, that 
is, tie ωαα = , so the circulatory part of the 
airfoil lift coefficient is given by

( ) ( ) ( )[ ]kGikFkCcl +== απαπ 22        (34)
For 0=k , the steady-state lift behavior is 

obtained, that is, lc  is linearly proportional 
toα . As k is increased, the lift plots develop 
into hysteresis loops and these loops rotate 
such that the amplitude of the lift response 
(half of the peak-to-peak value) decreases with 
increasing reduced frequency. These loops are 
circumvented in a counterclockwise direction 
such that the lift is lower than the steady value 
when α  is decreasing with time (i.e., there is a 
phase lag). For infinite reduced frequency the 
circulatory part of the lift amplitude is half that 
at 0=k  and there is no phase lag angle. The 
noncirculatory or apparent mass terms arise 
from the velocity gradient term and account for 
the pressure forces required to accelerate the 
fluid in the vicinity of the airfoil. 

Fig. 8 Normalized lift amplitude
      
The normalized  lift amplitude, απ2/lc  and 

phase of lift for pure angle of attack oscillations 
are presented in fig. 8 and fig. 9, where the 
significance of the apparent mass contribution 
to both the amplitude and phase can be 
appreciated. 
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When a wing’s angle of attack is increased 
rapidly, it can momentarily generate a higher 
maximum lift coefficient than it could if the 
angle of attack were increased slowly. This 
overshoot can be related to the change in angle 
of attack during the time required for the air to 
travel one chord length. The dynamic overshoot 
is attributed to two effects (for the airfoils that 
stall first at the leading edge): the delay in 
the separation of the boundary layer and the 
momentary existence of a vortex shed at the 
leading edge after the boundary layer does 
separate. The delay in separation corresponds 
to the finite time required for the aft edge of 
the separation bubble to move forward to its 
bursting position. Airfoils that stall first at the 
trailing edge also exhibit a dynamic overshoot, 
but considerably less than those airfoils that 
have leading edge stall.
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